How did new technology contribute to the growth of the Industrial Revolution?

Cassia Michael; Madysun Green; Gracie Travis; Robert Ayers; Amelia Godolphin; Catherine Denaux; Matt Erickson; and Anthony Hernandez

Introduction

The Industrial Revolution occurred from the 1880s to the mid-1940s, and it was a period of great innovation and discoveries that launched society forward. It began in Great Britain and many of the inventions during this time period were created by British inventors as Britain was the world’s leading commercial nation. It led to the invention of industrial machines in production, it led to a new, safer way to do mining, and it fostered innovation in healthcare with the creation of the iron lung. Not only was it a time of great innovation, but it was also a time of great growth with an unprecedented rise in the world’s population. In this chapter you will learn how every life was touched in some way by this revolution, and the overall standard of living became much better than it ever had been. It resulted in a change in the way most people lived as society shifted from being dominated by agriculture to being industrialized and urban. These changes in society were mostly the result of the great leaps that inventors were able to make in regards to technology.

The steam engine

How did new technology contribute to the growth of the Industrial Revolution?
“Steamboat plant, with Savery boiler” by Rankin Kennedy is in the Public Domain

One of the major innovations during the Industrial Revolution was the steam engine. The steam engine went through many different incarnations over time before it reached its most beneficial form. While the science surrounding the steam engine and the improvement of the steam engine itself moved rapidly during the Industrial Revolution, there were some barriers to its improvement such as the new patent system and lack of resources (such as money). The three main versions of the steam engine were the ones created by Thomas Savery, Thomas Newcomen, and James Watt. The creation and improvement of the steam engine was a driving factor of the Industrial Revolution leading to the creation of the first true industrial machines used in production and transportation that were a defining part of the period.

Thomas Savery, an English engineer, and inventor created the first functional version of the steam engine. He was inspired to create the steam engine when examining the difficult problem of pumping water out of coal mines. Savery’s version was a vast improvement on previous methods, which were slow and expensive, he patented this design in 1698 for 14 years (Lira, 2013). This design was used to “raise water from mines by suction produced from condensing steam” (Britannica, 2019). While this version was much better than previous versions, it still had multiple shortcomings that limited its effectiveness. This design was only able to draw water from shallow depths and the use of steam pressure to expel the water that had been drawn into the tank. In 1699, the British Parliament enacted the Fire Engine Act that extended Savery’s patent on all engines that raised water by fire to 21 years. While ultimately patents were beneficial overall in fostering innovation during the Industrial Revolution (Mokyr, 2009), unfortunately this patent slowed down the improvement of the steam engine by preventing other inventors from producing their own work.

One of the inventors who was limited by the patent that Savery had on this device was Thomas Newcomen. Newcomen was the first to create a successful steam engine that could be used to pump water out of mines in 1712. He attempted to work on this design for 10 years, but once he was successful, he was prevented from selling his design by Savery’s patent. If he wanted to be able to profit from his work, he was forced to collaborate with Savery. Newcomen’s design had many mechanical differences; it eliminated the need for steam pressure, and it used the vacuum concept in a different, more effective manner. Newcomen’s engine was the first to be considered an atmospheric engine, named so “because the greatest steam pressure used is near atmospheric pressure” (Lira, 2013). His design gave access to mines which could not have been worked at all previously” (Thurston, 1878). Newcomen’s design was the best design of its kind for 60 years, and it was used extensively until someone discovered how to fix its inefficiencies.

How did new technology contribute to the growth of the Industrial Revolution?
“SteamEngine Boulton&Watt 1784” by Robert Henry Thurston is in the Public Domain

The engineer who was able to further improve Newcomen’s superior design was Scottish inventor James Watt who discovered inefficiencies in Newcomen’s version and found a way to fix them. His breakthrough development was that he used a separate condenser, which did not require as much energy (Lira, 2013). Watt filed a patent in 1768 and was able to manufacture a small test engine. It took 11 years before Watt was able to effectively implement his findings because he lacked the funding to accomplish it by himself. Luckily, Watt was able to collaborate with Matthew Boulton who provided the finances needed, and the Watt steam engine was implemented in 1776. Watt and Boulton found uses for the steam engine beyond coal mines and in 1781 implemented design changes that took the technology indoors where it was used in operating mills and textile factories. The Watt steam engine did not reach its final form until 1790 with the installation of a pressure gauge. In 1794, Watt established the firm of Boulton and Watt to produce steam engines competitively because the patents were set to expire in 1800 (Britannica, 2019). Watt’s steam engine was an important piece of the Industrial Revolution as it improved previous technology rapidly and expanded the steam engine into more areas than ever before.

Steam power allowed for increased effectiveness and efficiency in coal mining, production, and transportation. The effect the steam engine had led to further improvements beyond those stated; it necessitated the creation of the study of thermodynamics, it allowed for the improvement of tools for measuring heat and weight, and it resulted in the creation of a standardized temperature scale (Johnson, 2016). Without those things, we would not have some of the current technologies that make our lives much easier. The journey of the steam engine to its final, most efficient form was a long one slowed by issues with patents and lack of funds, but it was a fundamental part of the Industrial Revolution and we would not be where we are today without it.

Many people have the misconception that James Watt invented the steam engine, however, he was the one who reinvented it. Watt was an instrument mechanic at the University of Glasgow, where he was inspired by the steam engine’s lack of efficiency. Watt recognized that Newcomen’s steam engine wasted a large amount of energy, by having to constantly be reheated and cooled. He refined the traditional steam engine by adding a separate cooling condenser, which allowed the steam to remain hot at all times. This separate cooling condenser removed the need for the cylinder’s temperature to be readjusted. Although Watt was an educated man, he was not a wealthy one. At the time, his idea was funded by Matthew Boulton. His financial constraints and obligations to Boulton were what pushed Watt to redesign and commercialize the steam engine. Ultimately, Watt reinvented the steam engine by introducing a separate cooling condenser. This cooling condenser not only made the steam engine more reliable and efficient but also allowed it to be located anywhere. This system fueled the Industrial Revolution.

Before steam power was harnessed for energy, water was removed from deep mines using buckets on a pulley system. However, water could only be removed from shallow depths (Lira, 2013). Newcomen and others saw this issue and isolated atmospheric pressure to expel water from mines. For many years, Newcomen’s steam engine was idealized and considered one of the best technologies of its time. However, Watt saw the flaws in this steam engine, which later led him to reinvent the way it worked. Newcomen’s steam engine required a large amount of energy in order to pump water from mines. This water pump was driven by a part called the steam cylinder, which created a partial vacuum. The steam cylinder simply created a pressure gradient when filled with steam, causing water to be lifted from mines. However, the steam cylinder in Newcomen’s engine needed to be heated and cooled repeatedly. This need to reheat and cool the cylinder resulted in a large amount of wasted energy and thermal stress (Lira, 2013). Thermal stress is caused by consistent temperature change, which can cause deformation in structure (“Thermal Stress”, 2007). This deformation could cause the machine to malfunction. In 1791, a newspaper released an article stating that a steam engine had caught on fire and exploded, which most likely was due to thermal stress (Times, 1791). There are many articles like this, including one from 1819, saying the steam engine caused a “melancholy catastrophe,” resulting in death and severe injury (Times, 1819). Besides the general inefficiencies in Newcomen’s steam engine, Watt also saw the danger of faulty machinery.

It took Watt nearly eleven years to create the cooling condenser, and it wasn’t until he had the financial resources that he was able to see the fruits of his labor. Watt’s steam engine worked on the same pressure gradient that Newcomen’s did, but the steam cylinder remained hot at all times (Lira, 2013). He created a separate compartment that was permanently kept cool, while the cylinder remained hot. Since the cylinder remained hot it no longer required or lost as much energy and became thermally efficient (Palermo, 2014). By becoming more efficient and burning less coal, it meant that steam engines could be used elsewhere, such as factories or mills. With the addition of the cooling condenser, the steam cylinder doubled its power (Russel, 2019). However, Watt did not stop at the cooling condenser. He continued to work with Boulton for many years tinkering the machine. Watt’s invention of the cooling condenser revolutionized this time period, as he saw a need for improvement. Through his obligation to Boulton and pressure from society, Watt reinvented the steam engine inspiring many subsequent inventions.  Many argue that Watt’s improvements to the steam engine triggered the Industrial Revolution. While this cannot be certain, his ideology and innovation certainly impacted this time. William Rosen states that “The most important invention of the Industrial Revolution was invention itself” (Rosen, 2010). Watt’s steam engine inspired multiple subsequent steam locomotive machinery and high-pressure engines.  He greatly impacted society, and many considered him one of the greatest inventors of all time. A news article in 1824 states that his work was so impressive, that a city in England considered building a monument after him (Times, 1824). Although Watt’s engine was invented from innovation and curiosity, it would not have been successful without science. He used many general principles from physics, such as creating a vacuum, thermal energy, and understanding pressure gradients. Although Watt was not the first to invent these principles and systems, he wouldn’t have been able to improve the engine without understanding how they worked. Watt created the cooling condenser technology, but without a scientific background, he would not have been successful.

How did new technology contribute to the growth of the Industrial Revolution?
“The Locomotive” by Hartford Steam Boiler Inspection and Insurance Company is in the Public Domain

The Watt Steam Engine was one of the most profound technologies of the Industrial Revolution and the catalyst for numerous improvements in efficiency and productivity in one of the key businesses of this era: mining. The greatest benefactor of Watt’s invention was the mining industry, who immediately felt the benefits through the increased capability to pump water from its mines, allowing for greater coal and other metal extraction. Mining was one of the key industries of the Industrial era; vast quantities of coal were needed to power countless steam engines and furnaces, along with a wide array of other metals and minerals required by a rapidly evolving economy.

During the late 18th century and early 19th century, coal mining was one of the largest industries in Great Britain and constantly was in search of new and improved methods to increase their mining yields. Watt’s ingenious invention of a separate cooling condenser vastly increased the efficiency of steam engines during this time, resulting in up to a 100% increase in productivity compared to the Newcomen engine, which proved to be very valuable when pumping water from British and European coal mines. In fact, it is estimated that upwards of 450 Watt Steam Engines were in use by the close of the 18th Century, and while this may seem like a small number, only 10 of Newcomen’s engines were recorded to be in use by this time for comparison. (Kanefsky and Robey, 1980) The vast majority of these steam engines were used for coal mining purposes, although Watt’s steam engine did find success in more-strenuous metal mines and British textile factories.

Many regard the Watt Steam Engine as “the single most important technological factor in bringing about the huge economic and social changes that we now call the Industrial Revolution.” Despite the fact Watt’s engine was generally not a part of the average person’s daily life, the widespread applications of Watt’s work benefitted all aspects of society in the early Industrial Era. Many regard the Watt Steam Engine as “the single most important technological factor in bringing about the huge economic and social changes that we now call the Industrial Revolution.” (Henderson, 2013) It was during this period of history that businesses and individuals began to transition from wood-burning to coal-burning as their main source of heating and energy. Coal stoves and furnaces burned hotter, required less fuel, and were cheaper compared to wood-burning stoves, and they were soon found throughout 19th Century homes in Great Britain. Consequently, the increased availability of coal resulting from Watt’s engine had a direct benefit on the lives of nearly every individual in the Industrial Revolution. Although Watt’s engine was not the one found early locomotives and steamships, his work made significant breakthroughs in the mechanics of steam power, paving the way for later improvements and applications of his own engine. As an 1852 article from a British publication “Leisure Hour” highlights, “there is no evidence that the idea of a rail ever entered the mind of Watt in connection with his locomotive engine… But what are now the achievements of railway transit!” (Watt and the Steam Engine, 1855, p. 118) This historical passage provides a brief insight into the direct and indirect effects Watt’s work had on Industrial Era society. Watt’s invention of his steam engine was a watershed moment of the Industrial Revolution; his innovations allowed for huge progress in coal mining, which in turn benefited almost every business and household in Great Britain. Without Watt’s genius, one might question whether the Industrial Revolution would’ve been as important to society and history as it is today.

Coal mining was one of the most important industries of this era and Watt’s engine greatly contributed to the increased efficiency and output mining. It is unlikely that anyone did not benefit from the growth of coal mining during this period as it was a cheaper and better form of fuel for homes, businesses, and factories, further underlining Watt’s Steam Engine as being the catalyst of the Industrial Revolution.

science

How did new technology contribute to the growth of the Industrial Revolution?
“STEAM HAMMER IN FULL WORK” by James Nasmith is in the Public Domain

Science in the Industrial Revolution was one, if not the, leading factor to technological advancements during the time. Scientists as a whole began to get a better grasp of how the world worked, including how to harness various energies and turn them into machines that eased processes that were considered difficult or even impossible before. The utmost important discovery during this time was the discovery of thermodynamics, which allowed for the invention of all new machinery (Cardwell, 1971). Science was the driving factor of the Industrial Revolution and the discoveries during the time allowed for inventors and technologists to have a whole new approach in their technological creations, advancing society to a more modern era, affecting the course of both science and technology for the indefinite future.

How did new technology contribute to the growth of the Industrial Revolution?
“The Maxim Electric Light and Power Co.” by United States Electric Lighting Company is in the Public Domain

During the Industrial Revolution era, there were many scientists focused on new energy sources such as steam, electricity, and metals (Grada, 2016). It is thought by many, that science is actually what started the Industrial Revolution. The steam engine invented by Thomas Savery and Benjamin Franklin’s discovery of electricity in the mid-1700s were some of the greatest discoveries/inventions for mankind. Both of these discoveries led to one of the most important scientific discoveries made, that being thermodynamics. In addition to thermodynamics, both metallurgy and chemistry had a big part in the industrial revolution (Musson, 1994). These sciences were used to create many technologies, although one important invention was the electric dynamo (a small electric generator) (Williams, 2018). This device was simple, as it was just a small copper wheel that rotated between magnets to create a small amount of electricity. Although it sounds insignificant, this device was the starting point for many if not all electrical devices throughout the Industrial Revolution and through today.

Many engineers and inventors used Newtonian textbooks to develop new technologies during this time period (Grada, 2016). In addition, the entirely new sciences provoked different ways to create new goods, receive goods, and ultimately advanced trading and technological development to a whole new level. One major discovery was thermodynamics. Thermodynamics allowed for the creation of new machine tools that led to much better thus led to new machinery and ways to create/harness new energies (Williams, 2018).

The new sciences that led to new technologies affected society in many ways. From helping average citizens get electricity, transportation, jobs, and many other aspects. The Industrial Revolution was a peaking point for many civilians. Although the concept was too good to be true many scientists and inventors became too rich and powerful for their own good, ultimately abusing the average joe and the working conditions that they were put in. In addition, science affected society by bringing forth many new sciences that continue to change how the world is seen today, from thermodynamics to the founding of modern biology, to advanced chemistry and metallurgy.

Ultimately, the “Industrial Revolution” is a very diverse era in terms of science and technology. Science was one of the most important factors at the time, as it was leading society towards what we know today. Some of the most important inventions were created during this time that we still use today. The first revolution was started due to the many extremely important scientific discoveries made, while the second was the effect of those sciences and how they could be used to create steel, use electricity in more effective ways, and even began the automobile industry (Industrial Revolution, n.d.). It wasn’t until the early 1800s that science really took off, causing a chain reaction of science to technology that continues to this present day.

Child labor

How did new technology contribute to the growth of the Industrial Revolution?
“Doffers in Cherryville Mfg. Co., N.C.” by Lewis Hine is in the Public Domain

New developments and discoveries, such as the steam engine, helped pave the way for economies and societies across the world to transform into global superpowers through the Industrial Revolution. While it brought many job opportunities, the Industrial Revolution also brought new workers: children. Children were used as workers in factories and mines because their size allowed them to move into places that adults couldn’t fit (“Child Labor,” 2009). During the Industrial Revolution, advancements in technology drove the progression of politics in society and social reform movements, primarily those around child labor laws.

For many of the employers during the industrialization period, children were seen as an asset, therefore they could be hired for lower wages and used for jobs that adults couldn’t do or for simpler tasks. Many of the children working at this time were from families in poverty, therefore many of them were made to work to help support their families, but that didn’t come without cost. Industrialists began to exploit children from lower working classes to work in unsatisfactory conditions such as working on machinery in factories and even breaking up coal at the mines. According to the census conducted by Smee and Baxter in 1841 and 1861, “Baxter’s analysis of manual occupations showed that only about forty percent of workers in manufacturing were men, the rest were women and children. Hence, total employment in manufacturing was 2.5 times male employment with the additions being women and children” (Allen, 2018)

As people and politicians in society began to view the impact child labor was having on children, many believed that it was time for a change. The three laws that were enacted and most impacted the employment of children in the textile industry were the Cotton Factories Regulation Act of 1819, which set the minimum working age at 9 and maximum working hours at 12; the Regulation of Child Labor Law of 1833, which established paid inspectors to enforce the laws; and the Ten Hours Bill of 1847, which limited working hours to 10 for children and women (Tuttle, 2001). These laws were enacted to prevent and stop the harm working in hazardous conditions were causing to children forced to work; such as an incident reported in the London Times Newspaper describing black lung and respiratory diseases emerging in children who had worked in coal mines, and a death caused by “a blow to the neck, followed by disease from the unkept conditions in the manufactory” in a 12-year old boy (“British Library,” 1833). Following the impact these laws made on the push against child labor, many more acts have been put into place detailing the regulations and conditions that must be met in the workplace, and with the accompaniment of technological advancements, child labor laws have evolved and bettered with society.

The world wars

The Industrial Revolution was an era marked by a rapid increase in inventions and technological feats. It was a time during which the roots of entertainment, convenience, and communications technologies first appeared. But why then? How did so many innovations stem from one of the most tumultuous times in human history? Perhaps the key to these innovations was the instability and rapid changes society faced. The technological environment of the Industrial Revolution was shaped by vast socioeconomic forces, in particular, the wars which took place. This text discusses the massive effects the World Wars had on the technology in the Industrial Revolution.

How did new technology contribute to the growth of the Industrial Revolution?
“One of the first Big Berthas being readied for firing” by Marc Romanych is in the Public Domain

The early 20th century was marked by WW1 and the Roaring 20s. Though the USA tried to avoid involvement, they were pulled in by the needs of their allies. This war marks the true beginning of Industrial Warfare. Troops were conscripted via draft laws, and European civilian areas were often the targets for bombings. Industrialization changed the face of warfare, moving it from visual range person to person combat to the use of long-range artillery and chemical weapons for indiscriminate destruction. Innovations to try to break the stalemate in the trenches included machine guns, barbed wire, deadly chemicals, and hidden landmines. Eventually, the introduction of the tank blew everything else away and secured the end of the war. Other technologies included planes, early submarines, and the utilization of communication technology, including the newly introduced radio for communications between air, land, and sea, and telegraph lines rolled out into the trenches for instantaneous remote commands (3).

How did new technology contribute to the growth of the Industrial Revolution?
“Advertising For The Radiola Aeriola Senior Radio In The Washington DC Herald Newspaper, December 5, 1922” by Joe Haupt is licensed under CC BY-SA 4.0

How did new technology help the Industrial Revolution?

The steam engine turned the wheels of mechanized factory production. Its emergence freed manufacturers from the need to locate their factories on or near sources of water power. Large enterprises began to concentrate in rapidly growing industrial cities.

How did new technology affect the economy during the Industrial Revolution?

They used railroads to transport their goods and expand their businesses across the country, which helped increase their profit, therefore making America one of the most economically powerful countries in the world.

What was the impact of new machines and technology on the Industrial Revolution?

The Industrial Revolution shifted from an agrarian economy to a manufacturing economy where products were no longer made solely by hand but by machines. This led to increased production and efficiency, lower prices, more goods, improved wages, and migration from rural areas to urban areas.

What are 2 examples of new technology inventions during the Industrial Revolution?

Inventors and Inventions of the Industrial Revolution.
Spinning and weaving. ... .
The steam engine. ... .
Harnessing electricity. ... .
The telegraph and the telephone. ... .
The internal-combustion engine and the automobile..