How many 3 numbers can be formed from the digits 1 2 3 4 and assuming that I repetition of the digits is allowed II repetition of the digits is not allowed?

Solution:

Nội dung chính

  • How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that (i) repetition of the digits is allowed? (ii) repetition of the digits is not allowed?
  • Problem 1: How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that – 
  • (i) repetition of the digits is allowed?
  • (ii) repetition of the digits is not allowed? 
  • Problem 2: How many 3-digit even numbers can be formed from the digits 1, 2, 3, 4, 5, 6 if the digits can be repeated?
  • Problem 3: How many 4-letter code can be formed using the first 10 letters of the English alphabet if no letter can be repeated? 
  • Problem 4: How many 5-digit telephone numbers can be constructed using the digits 0 to 9 if each number starts with 67 and no digit appears more than once?
  • Problem 5: A coin is tossed 3 times and the outcomes are recorded. How many possible outcomes are there?
  • Problem 6: Given 5 flags of different colours, how many different signals can be generated if each signal requires the use of 2 flags, one below the other?

(i) When repetition of digits is allowed:
No. of ways of choosing first digit = 5
No. of ways of choosing second digit = 5
No. of ways of choosing third digit = 5
By fundamental counting principle,
Total possible number of ways = 5×5×5 = 125.

(ii) When repetition of digits is not allowed:
No. of ways of choosing first digit = 5
No. of ways of choosing second digit = 4
No. of ways of choosing to third digit = 3
By fundamental counting principle,
Total possible number of ways = 5×4×3 = 60


NCERT Solutions Class 11 Maths Chapter 7 Exercise 7.1 Question 1

How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that (i) repetition of the digits is allowed? (ii) repetition of the digits is not allowed?

Summary:

(i) Total number of 3 digit numbers formed when repetition is allowed = 125, (ii) Total number of 3 digit numbers formed when repetition is not allowed = 60

Problem 1: How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that – 

(i) repetition of the digits is allowed?

Solution: 

Answer: 125.

Method:

Here, Total number of digits = 5

Let 3-digit number be XYZ.

Now the number of digits available for X = 5,

As repetition is allowed,

So the number of digits available for Y and Z will also be 5 (each).

Thus, The total number of 3-digit numbers that can be formed = 5×5×5 = 125.

(ii) repetition of the digits is not allowed? 

Solution:

Answer: 60.

Method:

Here, Total number of digits = 5

Let 3-digit number be XYZ.

Now the number of digits available for X = 5,

As repetition is not allowed,

So the number of digits available for Y = 4 (As one digit has already been chosen at X),

Similarly, the number of digits available for Z = 3.

Thus, The total number of 3-digit numbers that can be formed = 5×4×3 = 60.

Problem 2: How many 3-digit even numbers can be formed from the digits 1, 2, 3, 4, 5, 6 if the digits can be repeated?

Solution:

Answer: 108.

Method:

Here, Total number of digits = 6

Let 3-digit number be XYZ.

Now, as the number should be even so the digits at unit place must be even, so number of digits available for Z = 3 (As 2,4,6 are even digits here),

As the repetition is allowed,

So the number of digits available for X = 6,

Similarly, the number of digits available for Y = 6.

Thus, The total number of 3-digit even numbers that can be formed = 6×6×3 = 108.

Problem 3: How many 4-letter code can be formed using the first 10 letters of the English alphabet if no letter can be repeated? 

Solution:

Answer: 5040

Method:

Here, Total number of letters = 10

Let the 4-letter code be 1234.

Now, the number of letters available for 1st place = 10,

As repetition is not allowed,

So the number of letters possible at 2nd place = 9 (As one letter has already been chosen at 1st place),

Similarly, the number of letters available for 3rd place = 8,

and the number of letters available for 4th place = 7.

Thus, The total number of 4-letter code that can be formed = 10×9×8×7 = 5040.

Problem 4: How many 5-digit telephone numbers can be constructed using the digits 0 to 9 if each number starts with 67 and no digit appears more than once?

Solution:

Answer: 336

Method:

Here, Total number of digits = 10 (from 0 to 9)

Let 5-digit number be ABCDE.

Now, As the number should start from  67 so the number of possible digits at A and B = 1 (each),

As repetition is not allowed,

So the number of digits available for C = 8 ( As 2 digits have already been chosen at A and B),

Similarly, the number of digits available for D = 7,

and the number of digits available for E = 6.

Thus, The total number of 5-digit telephone numbers that can be formed = 1×1×8×7×6 = 336.

Problem 5: A coin is tossed 3 times and the outcomes are recorded. How many possible outcomes are there?

Solution:

Answer: 8

Method:

We know that, the possible outcome after tossing a coin is either head or tail (2 outcomes),

Here, a coin is tossed 3 times and outcomes are recorded after each toss,

Thus, the total number of outcomes = 2×2×2 = 8.

Problem 6: Given 5 flags of different colours, how many different signals can be generated if each signal requires the use of 2 flags, one below the other?

Solution:

Answer: 20.

Method:

Here, Total number of flags = 5

As each signal requires 2 flag and signals should be different so repetition will not be allowed,

So, the number of flags possible for the upper place = 5,

and the number of flags possible for the lower place = 4.

Thus, the total number of different signals that can be generated = 5×4 = 20.

How many 3

Problem 2: How many 3-digit even numbers can be formed from the digits 1, 2, 3, 4, 5, 6 if the digits can be repeated? Solution: Answer: 108. Let 3-digit number be XYZ.

How many 3

Solution : (i) When repetition of digits is allowed:
No. of ways of choosing firsy digits = 5
No. of ways of choosing second digit = 5
No. of ways of choosing third digit = 5
Therefore, total possible numbers `= 5 xx 5 xx 5 = 125`
(ii) When repetition of digits is not allowed:
No.

How many 3

I was able to get this question, by changing 2, 3, 4 and 5 to 1, 2, 3 and 4; then multiplying 4 by 3 by 2 to give 24 possibilities.

How many 3

How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that repetition of the digits is not allowed. = m x n x p = 5 x 4 x 3 = 60. How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that repetition of the digits is allowed. Number of places for the digits = 3.

How many 3

Problem 2: How many 3-digit even numbers can be formed from the digits 1, 2, 3, 4, 5, 6 if the digits can be repeated? Solution: Answer: 108.

How many numbers of 3 digits can be formed with the digits 1 2 3 4 and 5 without any repetition of digits?

∴ Total number of 3-digit numbers = 3×4×5=60.

How many 3

Solution : (i) When repetition of digits is allowed:
No. of ways of choosing firsy digits = 5
No. of ways of choosing second digit = 5
No. of ways of choosing third digit = 5
Therefore, total possible numbers `= 5 xx 5 xx 5 = 125`
(ii) When repetition of digits is not allowed:
No.

How many 3

How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that repetition of the digits is not allowed. = m x n x p = 5 x 4 x 3 = 60. How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that repetition of the digits is allowed. Number of places for the digits = 3.